3.2591 \(\int \frac{(5-x) (2+5 x+3 x^2)^{3/2}}{(3+2 x)^{9/2}} \, dx\)

Optimal. Leaf size=175 \[ \frac{1327 \sqrt{3} \sqrt{-3 x^2-5 x-2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right ),-\frac{2}{3}\right )}{700 \sqrt{3 x^2+5 x+2}}+\frac{(347 x+358) \left (3 x^2+5 x+2\right )^{3/2}}{175 (2 x+3)^{7/2}}+\frac{(6179 x+8561) \sqrt{3 x^2+5 x+2}}{1750 (2 x+3)^{3/2}}-\frac{721 \sqrt{3} \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{500 \sqrt{3 x^2+5 x+2}} \]

[Out]

((8561 + 6179*x)*Sqrt[2 + 5*x + 3*x^2])/(1750*(3 + 2*x)^(3/2)) + ((358 + 347*x)*(2 + 5*x + 3*x^2)^(3/2))/(175*
(3 + 2*x)^(7/2)) - (721*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(500*Sqrt
[2 + 5*x + 3*x^2]) + (1327*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(700*S
qrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.099538, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {810, 843, 718, 424, 419} \[ \frac{(347 x+358) \left (3 x^2+5 x+2\right )^{3/2}}{175 (2 x+3)^{7/2}}+\frac{(6179 x+8561) \sqrt{3 x^2+5 x+2}}{1750 (2 x+3)^{3/2}}+\frac{1327 \sqrt{3} \sqrt{-3 x^2-5 x-2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{700 \sqrt{3 x^2+5 x+2}}-\frac{721 \sqrt{3} \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{500 \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[((5 - x)*(2 + 5*x + 3*x^2)^(3/2))/(3 + 2*x)^(9/2),x]

[Out]

((8561 + 6179*x)*Sqrt[2 + 5*x + 3*x^2])/(1750*(3 + 2*x)^(3/2)) + ((358 + 347*x)*(2 + 5*x + 3*x^2)^(3/2))/(175*
(3 + 2*x)^(7/2)) - (721*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(500*Sqrt
[2 + 5*x + 3*x^2]) + (1327*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(700*S
qrt[2 + 5*x + 3*x^2])

Rule 810

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*
f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d - b*e)*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2
 - b*d*e + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x
+ c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m + 1)
 - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m + 1
) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*
c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^{9/2}} \, dx &=\frac{(358+347 x) \left (2+5 x+3 x^2\right )^{3/2}}{175 (3+2 x)^{7/2}}-\frac{3}{350} \int \frac{(250+261 x) \sqrt{2+5 x+3 x^2}}{(3+2 x)^{5/2}} \, dx\\ &=\frac{(8561+6179 x) \sqrt{2+5 x+3 x^2}}{1750 (3+2 x)^{3/2}}+\frac{(358+347 x) \left (2+5 x+3 x^2\right )^{3/2}}{175 (3+2 x)^{7/2}}+\frac{\int \frac{-12759-15141 x}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx}{3500}\\ &=\frac{(8561+6179 x) \sqrt{2+5 x+3 x^2}}{1750 (3+2 x)^{3/2}}+\frac{(358+347 x) \left (2+5 x+3 x^2\right )^{3/2}}{175 (3+2 x)^{7/2}}-\frac{2163 \int \frac{\sqrt{3+2 x}}{\sqrt{2+5 x+3 x^2}} \, dx}{1000}+\frac{3981 \int \frac{1}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx}{1400}\\ &=\frac{(8561+6179 x) \sqrt{2+5 x+3 x^2}}{1750 (3+2 x)^{3/2}}+\frac{(358+347 x) \left (2+5 x+3 x^2\right )^{3/2}}{175 (3+2 x)^{7/2}}-\frac{\left (721 \sqrt{3} \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 x^2}{3}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{500 \sqrt{2+5 x+3 x^2}}+\frac{\left (1327 \sqrt{3} \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 x^2}{3}}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{700 \sqrt{2+5 x+3 x^2}}\\ &=\frac{(8561+6179 x) \sqrt{2+5 x+3 x^2}}{1750 (3+2 x)^{3/2}}+\frac{(358+347 x) \left (2+5 x+3 x^2\right )^{3/2}}{175 (3+2 x)^{7/2}}-\frac{721 \sqrt{3} \sqrt{-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{500 \sqrt{2+5 x+3 x^2}}+\frac{1327 \sqrt{3} \sqrt{-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{700 \sqrt{2+5 x+3 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.358465, size = 192, normalized size = 1.1 \[ -\frac{-1066 \sqrt{5} \sqrt{\frac{x+1}{2 x+3}} (2 x+3)^{9/2} \sqrt{\frac{3 x+2}{2 x+3}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right ),\frac{3}{5}\right )+31500 x^5+323760 x^4+1009230 x^3+1386750 x^2+878020 x+5047 \sqrt{5} \sqrt{\frac{x+1}{2 x+3}} (2 x+3)^{9/2} \sqrt{\frac{3 x+2}{2 x+3}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right )|\frac{3}{5}\right )+208240}{3500 (2 x+3)^{7/2} \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*(2 + 5*x + 3*x^2)^(3/2))/(3 + 2*x)^(9/2),x]

[Out]

-(208240 + 878020*x + 1386750*x^2 + 1009230*x^3 + 323760*x^4 + 31500*x^5 + 5047*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)
]*(3 + 2*x)^(9/2)*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticE[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5] - 1066*Sqrt[5]*Sqr
t[(1 + x)/(3 + 2*x)]*(3 + 2*x)^(9/2)*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticF[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5]
)/(3500*(3 + 2*x)^(7/2)*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.021, size = 389, normalized size = 2.2 \begin{align*}{\frac{1}{35000} \left ( 12704\,\sqrt{15}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ){x}^{3}\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+40376\,\sqrt{15}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ){x}^{3}\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+57168\,\sqrt{15}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ){x}^{2}\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+181692\,\sqrt{15}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ){x}^{2}\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+85752\,\sqrt{15}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) x\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+272538\,\sqrt{15}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) x\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+42876\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) +136269\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) +2107560\,{x}^{5}+11701520\,{x}^{4}+26044220\,{x}^{3}+28830120\,{x}^{2}+15748220\,x+3368360 \right ){\frac{1}{\sqrt{3\,{x}^{2}+5\,x+2}}} \left ( 3+2\,x \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^(9/2),x)

[Out]

1/35000*(12704*15^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x^3*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x
)^(1/2)+40376*15^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x^3*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)
^(1/2)+57168*15^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x^2*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^
(1/2)+181692*15^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x^2*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^
(1/2)+85752*15^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/
2)+272538*15^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)
+42876*(3+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))+1362
69*(3+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))+2107560*
x^5+11701520*x^4+26044220*x^3+28830120*x^2+15748220*x+3368360)/(3*x^2+5*x+2)^(1/2)/(3+2*x)^(7/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}}{\left (x - 5\right )}}{{\left (2 \, x + 3\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^(9/2),x, algorithm="maxima")

[Out]

-integrate((3*x^2 + 5*x + 2)^(3/2)*(x - 5)/(2*x + 3)^(9/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (3 \, x^{3} - 10 \, x^{2} - 23 \, x - 10\right )} \sqrt{3 \, x^{2} + 5 \, x + 2} \sqrt{2 \, x + 3}}{32 \, x^{5} + 240 \, x^{4} + 720 \, x^{3} + 1080 \, x^{2} + 810 \, x + 243}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^(9/2),x, algorithm="fricas")

[Out]

integral(-(3*x^3 - 10*x^2 - 23*x - 10)*sqrt(3*x^2 + 5*x + 2)*sqrt(2*x + 3)/(32*x^5 + 240*x^4 + 720*x^3 + 1080*
x^2 + 810*x + 243), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x**2+5*x+2)**(3/2)/(3+2*x)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}}{\left (x - 5\right )}}{{\left (2 \, x + 3\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^(9/2),x, algorithm="giac")

[Out]

integrate(-(3*x^2 + 5*x + 2)^(3/2)*(x - 5)/(2*x + 3)^(9/2), x)